The coronavirus and evidence-informed policy analysis (short version)

The coronavirus feels like a new policy problem that requires new policy analysis. The analysis should be informed by (a) good evidence, translated into (b) good policy. However, don’t be fooled into thinking that either of those things are straightforward. There are simple-looking steps to go from defining a problem to making a recommendation, but this simplicity masks the profoundly political process that must take place. Each step in analysis involves political choices to prioritise some problems and solutions over others, and therefore prioritise some people’s lives at the expense of others.

The very-long version of this post takes us through those steps in the UK, and situates them in a wider political and policymaking context. This post is shorter, and only scratches the surface of analysis.

5 steps to policy analysis

  1. Define the problem.

Perhaps we can sum it up as: (a) the impact of this virus and illness will be a level of death and illness that could overwhelm the population and exceed the capacity of public services, so (b) we need to contain the virus enough to make sure it spreads in the right way at the right time, so (c) we need to encourage and make people change their behaviour (primarily via hygiene and social distancing). However, there are many ways to frame this problem to emphasise the importance of some populations over others, and some impacts over others.

  1. Identify technically and politically feasible solutions.

Solutions are not really solutions: they are policy instruments that address one aspect of the problem, including taxation and spending, delivering public services, funding research, giving advice to the population, and regulating or encouraging changes to social behaviour. Each new instrument contributes an existing mix, with unpredictable and unintended consequences. Some instruments seem technically feasible (they will work as intended if implemented), but will not be adopted unless politically feasible (enough people support their introduction). Or vice versa. This dual requirement rules out a lot of responses.

  1. Use values and goals to compare solutions.

Typical judgements combine: (a) broad descriptions of values such as efficiency, fairness, freedom, security, and human dignity, (b) instrumental goals, such as sustainable policymaking (can we do it, and for how long?), and political feasibility (will people agree to it, and will it make me more or less popular or trusted?), and (c) the process to make choices, such as the extent to which a policy process involves citizens or stakeholders (alongside experts) in deliberation. They combine to help policymakers come to high profile choices (such as the balance between individual freedom and state coercion), and low profile but profound choices (to influence the level of public service capacity, and level of state intervention, and therefore who and how many people will die).

  1. Predict the outcome of each feasible solution.

It is difficult to envisage a way for the UK Government to publicise all of the thinking behind its choices (Step 3) and predictions (Step 4) in a way that would encourage effective public deliberation. People often call for the UK Government to publicise its expert advice and operational logic, but I am not sure how they would separate it from their normative logic about who should live or die, or provide a frank account without unintended consequences for public trust or anxiety. If so, one aspect of government policy is to keep some choices implicit and avoid a lot of debate on trade-offs. Another is to make choices continuously without knowing what their impact will be (the most likely scenario right now).

  1. Make a choice, or recommendation to your client.

Your recommendation or choice would build on these four steps. Define the problem with one framing at the expense of the others. Romanticise some people and not others. Decide how to support some people, and coerce or punish others. Prioritise the lives of some people in the knowledge that others will suffer or die. Do it despite your lack of expertise and profoundly limited knowledge and information. Learn from experts, but don’t assume that only scientific experts have relevant knowledge (decolonise; coproduce). Recommend choices that, if damaging, could take decades to fix after you’ve gone. Consider if a policymaker is willing and able to act on your advice, and if your proposed action will work as intended. Consider if a government is willing and able to bear the economic and political costs. Protect your client’s popularity, and trust in your client, at the same time as protecting lives. Consider if your advice would change if the problem seemed to change. If you are writing your analysis, maybe keep it down to one sheet of paper (in other words, fewer words than in this post up to this point).

Policy analysis is not as simple as these steps suggest, and further analysis of the wider policymaking environment helps describe two profound limitations to simple analytical thought and action.

  1. Policymakers must ignore almost all evidence

The amount of policy relevant information is infinite, and capacity is finite. So, individuals and governments need ways to filter out almost all of it. Individuals combine cognition and emotion to help them make choices efficiently, and governments have equivalent rules to prioritise only some information. They include: define a problem and a feasible response, seek information that is available, understandable, and actionable, and identify credible sources of information and advice. In that context, the vague idea of trusting or not trusting experts is nonsense, and the larger post highlights the many flawed ways in which all people decide whose expertise counts.

  1. They do not control the policy process.

Policymakers engage in a messy and unpredictable world in which no single ‘centre’ has the power to turn a policy recommendation into an outcome.

  • There are many policymakers and influencers spread across a political system. For example, consider the extent to which each government department, devolved governments, and public and private organisations are making their own choices that help or hinder the UK government approach.
  • Most choices in government are made in ‘subsystems’, with their own rules and networks, over which ministers have limited knowledge and influence.
  • The social and economic context, and events, are largely out of their control.

The take home messages (if you accept this line of thinking)

  1. The coronavirus is an extreme example of a general situation: policymakers will always have very limited knowledge of policy problems and control over their policymaking environment. They make choices to frame problems narrowly enough to seem solvable, rule out most solutions as not feasible, make value judgements to try help some more than others, try to predict the results, and respond when the results do not match their hopes or expectations.
  2. This is not a message of doom and despair. Rather, it encourages us to think about how to influence government, and hold policymakers to account, in a thoughtful and systematic way that does not mislead the public or exacerbate the problem we are seeing. No one is helping their government solve the problem by saying stupid shit on the internet (OK, that last bit was a message of despair).

 

Further reading:

The longer report sets out these arguments in much more detail, with some links to further thoughts and developments.

This series of ‘750 words’ posts summarises key texts in policy analysis and tries to situate policy analysis in a wider political and policymaking context. Note the focus on whose knowledge counts, which is not yet a big feature of this crisis.

These series of 500 words and 1000 words posts (with podcasts) summarise concepts and theories in policy studies.

This page on evidence-based policymaking (EBPM) uses those insights to demonstrate why EBPM is  a political slogan rather than a realistic expectation.

These recorded talks relate those insights to common questions asked by researchers: why do policymakers seem to ignore my evidence, and what can I do about it? I’m happy to record more (such as on the topic you just read about) but not entirely sure who would want to hear what.

3 Comments

Filed under 750 word policy analysis, agenda setting, Evidence Based Policymaking (EBPM), Policy learning and transfer, POLU9UK, Prevention policy, Psychology Based Policy Studies, Public health, public policy, Social change, UK politics and policy

3 responses to “The coronavirus and evidence-informed policy analysis (short version)

  1. Pingback: The coronavirus and evidence-informed policy analysis (long version) | Paul Cairney: Politics & Public Policy

  2. Pingback: El Coronavirus y el Análisis de Políticas Públicas Basado en Evidencia (versión corta) | Paul Cairney: Politics & Public Policy

  3. Pingback: Who can you trust during the coronavirus crisis? | Paul Cairney: Politics & Public Policy

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s