Tag Archives: policy analysis styles

Policy Analysis in 750 words: Classic 5-step advice

Policy analysis’ describes the identification of a policy problem and possible solutions.

Classic models of policy analysis are client-oriented. Most texts identify the steps that a policy analysis should follow, from identifying a problem and potential solutions, to finding ways to predict and evaluate the impact of each solution. Each text describes this process in different ways, as outlined in Boxes 1-5. However, for the most part, they follow the same five steps:

  1. Define a policy problem identified by your client.
  2. Identify technically and politically feasible solutions.
  3. Use value-based criteria and political goals to compare solutions.
  4. Predict the outcome of each feasible solution.
  5. Make a recommendation to your client.

Further, they share the sense that analysts need to adapt pragmatically to a political environment. Assume that your audience is not an experienced policy analyst. Assume a political environment in which there is limited attention or time to consider problems, and some policy solutions will be politically infeasible. Describe the policy problem for your audience: to help them see it as something worthy of their energy. Discuss a small number of possible solutions, the differences between them, and their respective costs and benefits. Keep it short with the aid of visual techniques that sum up the issue concisely, to minimise cognitive load and make the problem seem solvable.

Box 1. Bardach (2012) A Practical Guide for Policy Analysis

  1. ‘Define the problem’. Provide a diagnosis of a policy problem, using rhetoric and eye-catching data to generate attention.
  2. ‘Assemble some evidence’. Gather relevant data efficiently.
  3. ‘Construct the alternatives’. Identify the relevant and feasible policy solutions that your audience might consider.
  4. ‘Select the criteria’. Typical value judgements relate to efficiency, equity and fairness, the trade-off between individual freedom and collective action, and the extent to which a policy process involves citizens in deliberation.
  5. ‘Project the outcomes’. Focus on the outcomes that key actors care about (such as value for money), and quantify and visualise your predictions if possible.
  6. ‘Confront the trade-offs’. Compare the pros and cons of each solution, such as how much of a bad service policymakers will accept to cut costs.
  7. ‘Decide’. Examine your case through the eyes of a policymaker.
  8. ‘Tell your story’. Identify your target audience and tailor your case. Weigh up the benefits of oral versus written presentation. Provide an executive summary. Focus on coherence and clarity. Keep it simple and concise. Avoid jargon.

Box 2. Dunn (2017) Public Policy Analysis

  1. What is the policy problem to be solved? Identify its severity, urgency, cause, and our ability to solve it. Don’t define the wrong problem, such as by oversimplifying.
  2. What effect will each potential policy solution have? ‘Forecasting’ methods can help provide ‘plausible’ predictions about the future effects of current/ alternative policies.
  3. Which solutions should we choose, and why? Normative assessments are based on values such as ‘equality, efficiency, security, democracy, enlightenment’ and beliefs about the preferable balance between state, communal, and market/ individual solutions (2017: 6; 205).
  4. What were the policy outcomes? ‘Monitoring is crucial because it is difficult to predict policy success, and unintended consequences are inevitable (2017: 250).
  5. Did the policy solution work as intended? Did it improve policy outcomes? Try to measure the outcomes your solution, while noting that evaluations are contested (2017: 332-41).

Box 3. Meltzer and Schwartz (2019) Policy Analysis as Problem Solving

  1. ‘Define the problem’. Problem definition is a political act of framing, as part of a narrative to evaluate the nature, cause, size, and urgency of an issue.
  2. ‘Identify potential policy options (alternatives) to address the problem’. Identify many possible solutions, then select the ‘most promising’ for further analysis (2019: 65).
  3. Specify the objectives to be attained in addressing the problem and the criteria  to  evaluate  the  attainment  of  these  objectives  as  well as  the  satisfaction  of  other  key  considerations  (e.g.,  equity,  cost, equity, feasibility)’.
  4. ‘Assess the outcomes of the policy options in light of the criteria and weigh trade-offs between the advantages and disadvantages of the options’.
  5. ‘Arrive at a recommendation’. Make a preliminary recommendation to inform an iterative process, drawing feedback from clients and stakeholder groups (2019: 212).

Box 4. Mintrom (2012) Contemporary Policy Analysis

  1. ‘Engage in problem definition’. Define the nature of a policy problem, and the role of government in solving it, while engaging with many stakeholders (2012: 3; 58-60).
  2. ‘Propose alternative responses to the problem’. Identify how governments have addressed comparable problems, and a previous policy’s impact (2012: 21).
  3. ‘Choose criteria for evaluating each alternative policy response’. ‘Effectiveness, efficiency, fairness, and administrative efficiency’ are common (2012: 21).
  4. ‘Project the outcomes of pursuing each policy alternative’. Estimate the cost of a new policy, in comparison with current policy, and in relation to factors such as savings to society or benefits to certain populations.
  5. ‘Identify and analyse trade-offs among alternatives’. Use your criteria and projections to compare each alternative in relation to their likely costs and benefits.
  6. ‘Report findings and make an argument for the most appropriate response’. Client-oriented advisors identify the beliefs of policymakers and tailor accordingly (2012: 22).

Box 5 Weimer and Vining (2017) Policy Analysis: Concepts and Practice

  1. ‘Write to Your Client’. Having a client such as an elected policymaker requires you to address the question they ask, by their deadline, in a clear and concise way that they can understand (and communicate to others) quickly (2017: 23; 370-4).
  2. ‘Understand the Policy Problem’. First, ‘diagnose the undesirable condition’. Second, frame it as ‘a market or government failure (or maybe both)’.
  3. ‘Be Explicit About Values’ (and goals). Identify (a) the values to prioritise, such as ‘efficiency’, ‘equity’, and ‘human dignity’, and (b) ‘instrumental goals’, such as ‘sustainable public finance or political feasibility’, to generate support for solutions.
  4. ‘Specify Concrete Policy Alternatives’. Explain potential solutions in sufficient detail to predict the costs and benefits of each ‘alternative’ (including current policy).
  5. ‘Predict and Value Impacts’. Short deadlines dictate that you use ‘logic and theory, rather than systematic empirical evidence’ to make predictions efficiently (2017: 27)
  6. ‘Consider the Trade-Offs’. Each alternatives will fulfil certain goals more than others. Produce a summary table to make value-based choices about trade-offs (2017: 356-8).
  7. ‘Make a Recommendation’. ‘Unless your client asks you not to do so, you should explicitly recommend one policy’ (2017: 28).

This is an excerpt from The Politics of Policy Analysis, found here: https://paulcairney.wordpress.com/policy-analysis-in-750-words/

1 Comment

Filed under 750 word policy analysis, Uncategorized

Policy Analysis in 750 Words: how much impact can you expect from your analysis?

This post forms one part of the Policy Analysis in 750 words series overview.

Throughout this series you may notice three different conceptions about the scope of policy analysis:

  1. ‘Ex ante’ (before the event) policy analysis. Focused primarily on defining a problem, and predicting the effect of solutions, to inform current choice (as described by Meltzer and Schwartz and Thissen and Walker).
  2. ‘Ex post’ (after the event) policy analysis. Focused primarily on monitoring and evaluating that choice, perhaps to inform future choice (as described famously by Weiss).
  3. Some combination of both, to treat policy analysis as a continuous (never-ending) process (as described by Dunn).

As usual, these are not hard-and-fast distinctions, but they help us clarify expectations in relation to different scenarios.

  1. The impact of old-school ex ante policy analysis

Radin provides a valuable historical discussion of policymaking with the following elements:

  • a small number of analysts, generally inside government (such as senior bureaucrats, scientific experts, and – in particular- economists),
  • giving technical or factual advice,
  • about policy formulation,
  • to policymakers at the heart of government,
  • on the assumption that policy problems would be solved via analysis and action.

This kind of image signals an expectation for high impact: policy analysts face low competition, enjoy a clearly defined and powerful audience, and their analysis is expected to feed directly into choice.

Radin goes on to describe a much different, modern policy environment: more competition, more analysts spread across and outside government, with a less obvious audience, and – even if there is a client – high uncertainty about where the analysis fits into the bigger picture.

Yet, the impetus to seek high and direct impact remains.

This combination of shifting conditions but unshifting hopes/ expectations helps explain a lot of the pragmatic forms of policy analysis you will see in this series, including:

  • Keep it catchy, gather data efficiently, tailor your solutions to your audience, and tell a good story (Bardach)
  • Speak with an audience in mind, highlight a well-defined problem and purpose, project authority, use the right form of communication, and focus on clarity, precision, conciseness, and credibility ( Smith)
  • Address your client’s question, by their chosen deadline, in a clear and concise way that they can understand (and communicate to others) quickly (Weimer and Vining)
  • Client-oriented advisors identify the beliefs of policymakers and anticipate the options worth researching (Mintrom)
  • Identify your client’s resources and motivation, such as how they seek to use your analysis, the format of analysis they favour (make it ‘concise’ and ‘digestible’), their deadline, and their ability to make or influence the policies you might suggest (Meltzer and Schwartz).
  • ‘Advise strategically’, to help a policymaker choose an effective solution within their political context (Thissen and Walker).
  • Focus on producing ‘policy-relevant knowledge’ by adapting to the evidence-demands of policymakers and rejecting a naïve attachment to ‘facts speaking for themselves’ or ‘knowledge for its own sake’ (Dunn).
  1. The impact of research and policy evaluation

Many of these recommendations are familiar to scientists and researchers, but generally in the context of far lower expectations about their likely impact, particularly if those expectations are informed by policy studies (compare Oliver & Cairney with Cairney & Oliver).

In that context, Weiss’ work is a key reference point. It gives us a menu of ways in which policymakers might use policy evaluation (and research evidence more widely):

  • to inform solutions to a problem identified by policymakers
  • as one of many sources of information used by policymakers, alongside ‘stakeholder’ advice and professional and service user experience
  • as a resource used selectively by politicians, with entrenched positions, to bolster their case
  • as a tool of government, to show it is acting (by setting up a scientific study), or to measure how well policy is working
  • as a source of ‘enlightenment’, shaping how people think over the long term (compare with this discussion of ‘evidence based policy’ versus ‘policy based evidence’).

In other words, researchers may have a role, but they struggle (a) to navigate the politics of policy analysis, (b) find the right time to act, and (c) to secure attention, in competition with many other policy actors.

  1. The potential for a form of continuous impact

Dunn suggests that the idea of ‘ex ante’ policy analysis is misleading, since policymaking is continuous, and evaluations of past choices inform current choices. Think of each policy analysis steps as ‘interdependent’, in which new knowledge to inform one step also informs the other four. For example, routine monitoring helps identify compliance with regulations, if resources and services reach ‘target groups’, if money is spent correctly, and if we can make a causal link between the policy solutions and outcomes. Its impact is often better seen as background information with intermittent impact.

Key conclusions to bear in mind

  1. The demand for information from policy analysts may be disproportionately high when policymakers pay attention to a problem, and disproportionately low when they feel that they have addressed it.
  2. Common advice for policy analysts and researchers often looks very similar: keep it concise, tailor it to your audience, make evidence ‘policy relevant’, and give advice (don’t sit on the fence). However, unless researchers are prepared to act quickly, to gather data efficiently (not comprehensively), to meet a tight brief for a client, they are not really in the impact business described by most policy analysis texts.
  3. A lot of routine, continuous, impact tends to occur out of the public spotlight, based on rules and expectations that most policy actors take for granted.

Further reading

See the Policy Analysis in 750 words series overview to continue reading on policy analysis.

See the ‘evidence-based policymaking’ page to continue reading on research impact.

ebpm pic

Bristol powerpoint: Paul Cairney Bristol EBPM January 2020

2 Comments

Filed under 750 word policy analysis, Evidence Based Policymaking (EBPM), Policy learning and transfer, public policy

Policy Analysis in 750 Words: Reflecting on your role as a policy analyst

This post forms one part of the Policy Analysis in 750 words series overview.

One aim of this series is to combine insights from policy research (1000, 500) and policy analysis texts.

If we take key insights from policy theories seriously, we can use them to identify (a) the constraints to policy analytical capacity, and (b) the ways in which analysts might address them. I use the idea of policy analyst archetypes to compare a variety of possible responses.

Key constraints to policy analytical capacity

Terms like ‘bounded rationality’ highlight major limits on the ability of humans and organisations to process information.

Terms like policymaking ‘context’, ‘environments’, and multi-centric policymaking suggest that the policy process is beyond the limits of policymaker understanding and control.

  • Policy actors need to find ways to act, with incomplete information about the problem they seek to solve and the likely impact of their ‘solution’.
  • They gather information to help reduce uncertainty, but problem definition is really about exercising power to reduce ambiguity: select one way to interpret a problem (at the expense of most others), and limit therefore limit the relevance and feasibility of solutions.
  • This context informs how actors might use the tools of policy analysis. Key texts in this series highlight the use of tools to establish technical feasibility (will it work as intended?), but policymakers also select tools for their political feasibility (who will support or oppose this measure?).

box 2.3 2nd ed UPP

How might policy analysts address these constraints ethically?

Most policy analysis texts (in this series) consider the role of professional ethics and values during the production of policy analysis. However, they also point out that there is not a clearly defined profession and associated code of conduct (e.g. see Adachi). In that context, let us begin with some questions about the purpose of policy analysis and your potential role:

  1. Is your primary role to serve individual clients or some notion of the ‘public good’?
  2. Should you maximise your role as an individual or play your part in a wider profession?
  3. What is the balance between the potential benefits of individual ‘entrepreneurship’ and collective ‘co-productive’ processes?
  4. Which policy analysis techniques should you prioritise?
  5. What forms of knowledge and evidence count in policy analysis?
  6. What does it mean to communicate policy analysis responsibly?
  7. Should you provide a clear recommendation or encourage reflection?

 

Policy analysis archetypes: pragmatists, entrepreneurs, manipulators, storytellers, and decolonisers

In that context, I have created a story of policy analysis archetypes to identify the elements that each text emphasises.

The pragmatic policy analyst

  • Bardach provides the classic simple, workable, 8-step system to present policy analysis to policymakers while subject to time and resource-pressed political conditions.
  • Dunn also uses Wildavsky’s famous phrase ‘art and craft’ to suggest that scientific and ‘rational’ methods can only take us so far.

The professional, clientoriented policy analyst

  • Weimer and Vining provide a similar 7-step client-focused system, but incorporating a greater focus on professional development and economic techniques (such as cost-benefit-analysis) to emphasise a particular form of professional analyst.
  • Meltzer and Schwartz also focus on advice to clients, but with a greater emphasis on a wide variety of methods or techniques (including service design) to encourage the co-design of policy analysis with clients.

The communicative policy analyst

  •  C. Smith focuses on how to write and communicate policy analysis to clients in a political context.
  • Compare with Spiegelhalter and Gigerenzer on how to communicate responsibly when describing uncertainty, probability, and risk.

The manipulative policy analyst.

  • Riker helps us understand the relationship between two aspects of agenda setting: the rules/ procedures to make choice, and the framing of policy problems and solutions.

The entrepreneurial policy analyst

  • Mintrom shows how to combine insights from studies of policy entrepreneurship and policy analysis, to emphasise the benefits of collaboration and creativity.

The questioning policy analyst

  • Bacchi  analyses the wider context in which people give and use such advice, to identify the emancipatory role of analysis and encourage policy analysts to challenge dominant social constructions of problems and populations.

The storytelling policy analyst

  • Stone identifies the ways in which people use storytelling and argumentation techniques to define problems and justify solutions. This process is about politics and power, not objectivity and optimal solutions.

The decolonizing policy analyst.

  • L.T. Smith does not describe policy analysis directly, but shows how the ‘decolonization of research methods’ can inform the generation and use of knowledge.
  • Compare with Hindess on the ways in which knowledge-based hierarchies rely on an untenable, circular logic.
  • Compare with Michener’s thread, discussing Doucet’s new essay on (a) the role of power and knowledge in limiting (b) the ways in which we gather evidence to analyse policy problems.

Using archetypes to define the problem of policy analysis

Studies of the field (e.g. Radin plus Brans, Geva-May, and Howlett) suggest that there are many ways to do policy analysis. Further, as Thissen and Walker describe, such roles are not mutually exclusive, your views on their relative value could change throughout the process of analysis, and you could perform many of these roles.

Further, each text describes multiple roles, and some seem clustered together:

  • pragmatic, client-orientated, and communicative could sum-up the traditional 5-8 step approaches, while
  • questioning, storytelling, and decolonizing could sum up an important (‘critical’) challenge to narrow ways of thinking about policy analysis and the use of information.

Still, the emphasis matters.

Each text is setting an agenda or defining the problem of policy analysis more-or-less in relation to these roles. Put simply, the more you are reading about economic theory and method, the less you are reading about dominance and manipulation.

How can you read further?

Michener’s ‘Policy Feedback in a Racialized Polity’ connects to studies of historical institutionalism, and reminds us to use insights from policy theories to identify the context for policy analysis.

I have co-authored a lot about uncertainty/ ambiguity in relation to ‘evidence based policymaking’, including:

See also The new policy sciences for a discussion of how these issues inform Lasswell’s original vision for the policy sciences (combining the analysis of and for policy).

3 Comments

Filed under 750 word policy analysis, agenda setting, Evidence Based Policymaking (EBPM), feminism, public policy, Storytelling

Policy Analysis in 750 words: Wil Thissen and Warren Walker (2013) Public Policy Analysis

Thissen Walker 2013 cover

Please see the Policy Analysis in 750 words series overview before reading the summary. Please note that this is an edited book and the full list of authors (PDF) is here. I’m using the previous sentence as today’s excuse for not sticking to 750 words.

Wil Thissen and Warren Walker (editors) (2013) Public Policy Analysis: New Developments (Springer)

Our premise is that there is no single, let alone ‘one best’, way of conducting policy analyses (Thissen and Walker, 2013: 2)

Thissen and Walker (2013: 2) begin by identifying the proliferation of (a) policy analysts inside and outside government, (b) the many approaches and methods that could count as policy analysis (see Radin), and therefore (c) a proliferation of concepts to describe it.

Like Vining and Weimar, they distinguish between:

  1. Policy analysis, as the advice given to clients before they make a choice. Thissen and Walker (2013: 4) describe analysts working with a potential range of clients, when employed directly by governments or organisations, or acting more as entrepreneurs with multiple audiences in mind (compare with Bardach, Weimer & Vining, Mintrom).
  2. Policy process research, as the study of such actors within policymaking systems (see 500 and 1000).

Policy theory: implications for policy analysis

Policy process research informs our understanding of policy analysis, identifying what analysts and their clients (a) can and cannot do, which informs (b) what they should do.

As Enserink et al (2012: 12-3) describe, policy analysis (analysis for policy) will differ profoundly if the policy process is ‘chaotic and messy’ rather than ‘neat and rational’.

The range of policy concepts and theories (analysis of policy) at our disposal helps add meaning to policy analysis as a practice. Like Radin, Enserink et al trace historic attempts to seek ‘rational’ policy analysis then conclude that modern theories – describing policymaking complexity – are ‘more in line with political reality’ (2012: 13-6).

As such, policy analysis shifts from:

(a) A centralised process with few actors inside government, to (b) a messy process including many policymakers and influencers, inside and outside government

(a) Translating science into policy, to (b) a competition to frame issues and assess policy-relevant knowledge

(a) An ‘optimal’ solution from one perspective, to (b) a negotiated solution based on many perspectives (in which optimality is contested)

(a) Analysing a policy problem/ solution with a common metric (such as cost benefit analysis), to (b) developing skills relating to: stakeholder analysis, network management, collaboration, mediation or conflict resolution based on sensitivity to the role of different beliefs, and the analysis of policymaking institutions to help resolve fragmentation (2013: 17-34).

Their Table 2.1 (2012: 35) outlines these potential differences (pop your reading glasses on …. now!):

Enserink et al 2012 page 35

In many cases, the role of an analyst remains uncertain. If we follow the ACF story, does an analyst appeal to one coalition or seek to mediate between them? If we follow MSA, do they wait for a ‘window of opportunity’ or seek to influence problem definition and motivation to adopt certain solutions?

Policy Analysis: implications for policy theory

In that context, rather than identify a 5-step plan for policy analysis, Mayer et al (2013: 43-50) suggest that policy analysts tend to perform one or more of six activities:

  1. ‘Research and analyze’, to collect information relevant to policy problems.
  2. ‘Design and recommend’, to produce a range of potential solutions.
  3. ‘Clarify values and arguments’, to identify potential conflicts and facilitate high quality debate.
  4. ‘Advise strategically’, to help a policymaker choose an effective solution within their political context.
  5. ‘Democratize’, to pursue a ‘normative and ethical objective: it should further equal access to, and influence on, the policy process for all stakeholders’ (2013: 47)
  6. ‘Mediate’, to foster many forms of cooperation between governments, stakeholders (including business), researchers, and/ or citizens.

Styles of policy analysis

Policy analysts do not perform these functions sequentially or with equal weight.

Rather, Mayer et al (2013: 50-5) describe ‘six styles of policy analysis’ that vary according to the analyst’s ‘assumptions about science (epistemology), democracy, learning, and change’ (and these assumptions may change during the process):

  1. Rational, based on the idea that we can conduct research in a straightforward way within a well-ordered policy process (or modify the analysis to reflect limits to research and order).
  2. Argumentative, based on a competition to define policy problems and solutions (see Stone).
  3. Client advice, based on the assumption that analysis is part of a ‘political game’, and analysts bring knowledge of political strategy and policymaking complexity.
  4. Participatory, to facilitate a more equal access to information and debate among citizens.
  5. Process, based on the idea that the faithful adherence to good procedures aids high quality analysis (and perhaps mitigates an ‘erratic and volatile’ policy process)
  6. Interactive, based on the idea that the rehearsal of many competing perspectives is useful to policymaker deliberations (compare with reflexive learning).

In turn, these styles prompt different questions to evaluate the activities associated with analysis (2013: 56):

p56 Mayer et al

In relation to the six policy analysis activities,

  • the criteria for good policy analysis include: the quality of knowledge, usefulness of advice to clients and stakeholders, quality of argumentation, pragmatism of advice, transparency of processes, and ability to secure a mediated settlement (2013: 58).
  • The positive role for analysts includes ‘independent scientist’ or expert, ‘ethicist’, ‘narrator’, ‘counsellor’, ‘entrepreneur’,’ democratic advocate’, or ‘facilitator’ (2013: 59).

Further, their – rather complicated – visualisations of these roles (e.g. p60; compare with the Appendix) project the (useful) sense that (a) individuals face a trade-off between roles (even if they seek to combine some), and (b) many people making many trade-offs adds up to a complex picture of activity.

Therefore, we should bear in mind that

(a) there exist some useful 5-step guides for budding analyst, but

(b) even if they adopt a simple strategy, analysts will also need to find ways to understand and engage with a complex policymaking systems containing a huge number of analysts, policymakers, and influencers.

Policy Analysis styles: implications for problem definition and policy design

Thissen (2013: 66-9) extends the focus on policymaking context and policy analysis styles to problem definition, including:

  1. A rational approach relies on research knowledge to diagnose problems (the world is knowable, use the best scientific methods to produce knowledge, and subject the results to scientific scrutiny).
  2. A ‘political game model’ emphasises key actors and their perspectives, value conflicts, trust, and interdependence (assess the potential to make deals and use skills of mediation and persuasion to secure them).

These different starting points influence they ways in which analysts might take steps to identify: how people perceive policy problems, if other definitions are more useful, how to identify a problem’s cause and effect, and the likely effect of a proposed solution, communicate uncertainty, and relate the results to a ‘policy arena’ with its own rules on resolving conflict and producing policy instruments (2013: 70-84; 93-4).

Similarly, Bots (2013: 114) suggests that these styles inform a process of policy design, constructed to change people’s minds during repeated interactions with clients (such as by appealing to scientific evidence or argumentation).

Bruijn et al (2013: 134-5) situate such activities in modern discussions of policy analysis:

  1. In multi-centric systems, with analysts focused less on ‘unilateral decisions using command and control’ and more on ‘consultation and negotiation among stakeholders’ in networks.
  • The latter are necessary because there will always be contestation about what the available information tells us about the problem, often without a simple way to negotiate choices on solutions.
  1. In relation to categories of policy problems, including
  • ‘tamed’ (high knowledge/ technically solvable, with no political conflict)
  • ‘untamed ethical/political’ (technically solvable, with high moral and political conflict)
  • ‘untamed scientific’ (high consensus but low scientific knowledge)
  • ‘untamed’ problems (low consensus, low knowledge).

Put simply, ‘rational’ approaches may help address low knowledge, while other skills are required to manage processes such as conflict resolution and stakeholder engagement (2013: 136-40)

Policy Analysis styles: implications for models

Part 2 of the book relates such styles (and assumptions about how ‘rational’ and comprehensive our analyses can be) to models of policy analysis. For example,

  1. Walker and van Daalen (2013: 157-84) explore models designed to compare the status quo with a future state, often based on the (shaky) assumption that the world is knowable and we can predict with sufficient accuracy the impact of policy solutions.
  2. Hermans and Cunningham (2013: 185-213) describe models to trace agent behaviour in networks and systems, and create multiple possible scenarios, which could help explore the ‘implementability’ of policies.
  3. Walker et al (2013: 215-61) relate policy analysis styles to how analysts might deal with uncertainty.
  • Some models may serve primarily to reduce ‘epistemic’ uncertainty associated with insufficient knowledge about the future (perhaps with a focus on methods and statistical analysis).
  • Others may focus on resolving ambiguity, in which many actors may define/ interpret problems and feasible solutions in different ways.

Overall, this book contains one of the most extensive discussions of 101 different technical models for policy analysis, but the authors emphasise their lack of value without initial clarity about (a) our beliefs regarding the nature of policymaking and (b) the styles of analysis we should use to resolve policy problems. Few of these initial choices can be resolved simply with reference to scientific analysis or evidence.

9 Comments

Filed under 750 word policy analysis, Evidence Based Policymaking (EBPM), public policy, Research design