Tag Archives: policymaking

Policy Analysis in 750 Words: what you need as an analyst versus policymaking reality

This post forms one part of the Policy Analysis in 750 words series overview. Note for the eagle eyed: you are not about to experience déjà vu. I’m just using the same introduction.

When describing ‘the policy sciences’, Lasswell distinguishes between:

  1. ‘knowledge of the policy process’, to foster policy studies (the analysis of policy)
  2. ‘knowledge in the process’, to foster policy analysis (analysis for policy)

The lines between each approach are blurry, and each element makes less sense without the other. However, the distinction is crucial to help us overcome the major confusion associated with this question:

Does policymaking proceed through a series of stages?

The short answer is no.

The longer answer is that you can find about 40 blog posts (of 500 and 1000 words) which compare (a) a stage-based model called the policy cycle, and (b) the many, many policy concepts and theories that describe a far messier collection of policy processes.

cycle

In a nutshell, most policy theorists reject this image because it oversimplifies a complex policymaking system. The image provides a great way to introduce policy studies, and serves a political purpose, but it does more harm than good:

  1. Descriptively, it is profoundly inaccurate (unless you imagine thousands of policy cycles interacting with each other to produce less orderly behaviour and less predictable outputs).
  2. Prescriptively, it gives you rotten advice about the nature of your policymaking task (for more on these points, see this chapter, article, article, and series).

Why does the stages/ policy cycle image persist? Two relevant explanations

 

  1. It arose from a misunderstanding in policy studies

In another nutshell, Chris Weible and I argue (in a secret paper) that the stages approach represents a good idea gone wrong:

  • If you trace it back to its origins, you will find Lasswell’s description of decision functions: intelligence, recommendation, prescription, invocation, application, appraisal and termination.
  • These functions correspond reasonably well to a policy cycle’s stages: agenda setting, formulation, legitimation, implementation, evaluation, and maintenance, succession or termination.
  • However, Lasswell was imagining functional requirements, while the cycle seems to describe actual stages.

In other words, if you take Lasswell’s list of what policy analysts/ policymakers need to do, multiple it by the number of actors (spread across many organisations or venues) trying to do it, then you get the multi-centric policy processes described by modern theories. If, instead, you strip all that activity down into a single cycle, you get the wrong idea.

  1. It is a functional requirement of policy analysis

This description should seem familiar, because the classic policy analysis texts appear to describe a similar series of required steps, such as:

  1. define the problem
  2. identify potential solutions
  3. choose the criteria to compare them
  4. evaluate them in relation to their predicted outcomes
  5. recommend a solution
  6. monitor its effects
  7. evaluate past policy to inform current policy.

However, these texts also provide a heavy dose of caution about your ability to perform these steps (compare Bardach, Dunn, Melzer and Schwartz, Mintrom, Thissen and Walker, Weimer and Vining)

In addition, studies of policy analysis in action suggest that:

  • an individual analyst’s need for simple steps, to turn policymaking complexity into useful heuristics and pragmatic strategies,

should not be confused with

What you need versus what you can expect

Overall, this discussion of policy studies and policy analysis reminds us of a major difference between:

  1. Functional requirements. What you need from policymaking systems, to (a) manage your task (the 5-8 step policy analysis) and (b) understand and engage in policy processes (the simple policy cycle).
  2. Actual processes and outcomes. What policy concepts and theories tell us about bounded rationality (which limit the comprehensiveness of your analysis) and policymaking complexity (which undermines your understanding and engagement in policy processes).

Of course, I am not about to provide you with a solution to these problems.

Still, this discussion should help you worry a little bit less about the circular arguments you will find in key texts: here are some simple policy analysis steps, but policymaking is not as ‘rational’ as the steps suggest, but (unless you can think of an alternative) there is still value in the steps, and so on.

See also:

The New Policy Sciences

Leave a comment

Filed under 750 word policy analysis, agenda setting, public policy

Policy Analysis in 750 Words: What can you realistically expect policymakers to do?

This post forms one part of the Policy Analysis in 750 words series overview.

One aim of this series is to combine insights from policy research (1000, 500) and policy analysis texts.

In this case, modern theories of the policy process help you identify your audience and their capacity to follow your advice. This simple insight may have a profound impact on the advice you give.

Policy analysis for an ideal-type world

For our purposes, an ideal-type is an abstract idea, which highlights hypothetical features of the world, to compare with ‘real world’ descriptions. It need not be an ideal to which we aspire. For example, comprehensive rationality describes the ideal type, and bounded rationality describes the ‘real world’ limitations to the ways in which humans and organisations process information.

 

Imagine writing policy analysis in the ideal-type world of a single powerful ‘comprehensively rational’ policymaker at the heart of government, making policy via an orderly policy cycle.

Your audience would be easy to identify, your analysis would be relatively simple, and you would not need to worry about what happens after you make a recommendation for policy change.

You could adopt a simple 5-8 step policy analysis method, use widely-used tools such as cost-benefit analysis to compare solutions, and know where the results would feed into the policy process.

I have perhaps over-egged this ideal-type pudding, but I think a lot of traditional policy analyses tapped into this basic idea and focused more on the science of analysis than the political and policymaking context in which it takes place (see Radin and Brans, Geva-May, and Howlett).

Policy analysis for the real world

Then imagine a far messier and less predictable world in which the nature of the policy issue is highly contestedresponsibility for policy is unclear, and no single ‘centre’ has the power to turn a recommendation into an outcome.

This image is a key feature of policy process theories, which describe:

  • Many policymakers and influencers spread across many levels and types of government (as the venues in which authoritative choice takes place). Consequently, it is not a straightforward task to identify and know your audience, particularly if the problem you seek to solve requires a combination of policy instruments controlled by different actors.
  • Each venue resembles an institution driven by formal and informal rules. Formal rules are written-down or widely-known. Informal rules are unwritten, difficult to understand, and may not even be understood in the same way by participants. Consequently, it is difficult to know if your solution will be a good fit with the standard operating procedures of organisations (and therefore if it is politically feasible or too challenging).
  • Policymakers and influencers operate in ‘subsystems’, forming networks built on resources such as trust or coalitions based on shared beliefs. Effective policy analysis may require you to engage with – or become part of – such networks, to allow you to understand the unwritten rules of the game and encourage your audience to trust the messenger. In some cases, the rules relate to your willingness to accept current losses for future gains, to accept the limited impact of your analysis now in the hope of acceptance at the next opportunity.
  • Actors relate their analysis to shared understandings of the world – how it is, and how it should be – which are often so well-established as to be taken for granted. Common terms include paradigms, hegemons, core beliefs, and monopolies of understandings. These dominant frames of reference give meaning to your policy solution. They prompt you to couch your solutions in terms of, for example, a strong attachment to evidence-based cases in public health, value for money in treasury departments, or with regard to core principles such as liberalism or socialism in different political systems.
  • Your solutions relate to socioeconomic context and the events that seem (a) impossible to ignore and (b) out of the control of policymakers. Such factors range from a political system’s geography, demography, social attitudes, and economy, while events can be routine elections or unexpected crises.

What would you recommend under these conditions? Rethinking 5-step analysis

There is a large gap between policymakers’ (a) formal responsibilities versus (b) actual control of policy processes and outcomes. Even the most sophisticated ‘evidence based’ analysis of a policy problem will fall flat if uninformed by such analyses of the policy process. Further, the terms of your cost-benefit analysis will be highly contested (at least until there is agreement on what the problem is, and how you would measure the success of a solution).

Modern policy analysis texts try to incorporate such insights from policy theories while maintaining a focus on 5-8 steps. For example:

  • Meltzer and Schwartz contrast their ‘flexible’ and ‘iterative’ approach with a too- rigid ‘rationalistic approach’.
  • Bardachand Dunn emphasise the value of political pragmatism and the ‘art and craft’ of policy analysis.
  • Weimer and Vininginvest 200 pages in economic analyses of markets and government, often highlighting a gap between (a) our ability to model and predict economic and social behaviour, and (b) what actually happens when governments intervene.
  • Mintrom invites you to see yourself as a policy entrepreneur, to highlight the value of of ‘positive thinking’, creativity, deliberation, and leadership, and perhaps seek ‘windows of opportunity’ to encourage new solutions. Alternatively, a general awareness of the unpredictability of events can prompt you to be modest in your claims, since the policymaking environment may be more important (than your solution) to outcomes.
  • Thissen and Walker focus more on a range of possible roles than a rigid 5-step process.

Beyond 5-step policy analysis

  1. Compare these pragmatic, client-orientated, and communicative models with the questioning, storytelling, and decolonizing approaches by Bacchi, Stone, and L.T. Smith.
  • The latter encourage us to examine more closely the politics of policy processes, including the importance of framing, narrative, and the social construction of target populations to problem definition and policy design.
  • Without this wider perspective, we are focusing on policy analysis as a process rather than considering the political context in which analysts use it.
  1. Additional posts on entrepreneurs and ‘systems thinking’ [to be added] encourage us to reflect on the limits to policy analysis in multi-centric policymaking systems.

 

 

Leave a comment

Filed under 750 word policy analysis, agenda setting, Evidence Based Policymaking (EBPM), public policy

Policy Concepts in 1000 Words: how do policy theories describe policy change?

The 1000 words and 500 words series already show how important but difficult it is to define and measure policy change. In this post, Leanne Giordono and I dig deeper into the – often confusingly different – ways in which different researchers conceptualise this process. We show why there is such variation and provide a checklist of questions to ask of any description of policy change.

Measuring policy change is more difficult than it looks

The measurement of policy change is important. Most ‘what is policy?’ discussions remind us that there can be a huge difference between policy as a (a)  statement of intent, (b) strategy, (c) collection of tools/ instruments and (d) contributor to policy outcomes.

Policy theories remind us that, while politicians and political parties often promise to sweep into office and produce radical departures from the past, most policy change is minor. There is a major gap between stated intention and actual outcomes, partly because policymakers do not control the policy process for which they are responsible. Instead, they inherit the commitments of their predecessors and make changes at the margins.

The 1000 words and 500 words posts suggest that we address this problem of measurement by identifying the use of a potentially large number of policy instruments or policy tools such as regulation (including legislation) and resources (money and staffing) to accentuate the power at policymaker’s disposal.

Then, they suggest that we tell a story of policy change, focusing on (a) what problem policymakers were trying to solve, and the size of their response in relation to the size of the problem, and (b) the precise nature of specific changes, or how each change contributes to the ‘big picture’.

This recommendation highlights a potentially major problem: as researchers, we can produce very different narratives of policy change from the same pool of evidence, by accentuating some measures and ignoring others, or putting more faith in some data than others.

Three ways to navigate different approaches to imagining and measuring change

Researchers use many different concepts and measures to define and identify policy change. It would be unrealistic – and perhaps unimaginative – to solve this problem with a call for one uniform approach.

Rather, our aim is to help you (a) navigate this diverse field by (b) identifying the issues and concepts that will help you interpret and compare different ways to measure change.

  1. Check if people are ‘showing their work’

Pay close attention to how scholars are defining their terms. For example, be careful with incomplete definitions that rely on a reference to evolutionary change (which can mean so many different things) or incremental change (e.g. does an increment mean small or non-radical)? Or, note that frequent distinctions between minor versus major change seem useful, but we are often trying to capture and explain a confusing mixture of both.

  1. Look out for different questions

Multiple typologies of change often arise because different theories ask and answer different questions:

  • The Advocacy Coalition Framework distinguishes between minor and major change, associating the former with routine ‘policy-oriented learning’, and the latter with changes in core policy beliefs, often caused by a ‘shock’ associated with policy failure or external events.
  • Innovation and Diffusion models examine the adoption and non-adoption of a specific policy solution over a specific period of time in multiple jurisdictions as a result of learning, imitation, competition or coercion.
  • Classic studies of public expenditure generated four categories to ask if the ‘budgetary process of the United States government is equivalent to a set of temporally stable linear decision rules’. They describe policy change as minor and predictable and explain outliers as deviations from the norm.
  • Punctuated Equilibrium Theory identifies a combination of (a) huge numbers of small policy change and (b) small numbers of huge change as the norm, in budgetary and other policy changes.
  • Hall distinguishes between (a) routine adjustments to policy instruments, (b) changes in instruments to achieve existing goals, and (c) complete shifts in goals. He compares long periods in which (1) some ideas dominate and institutions do not change, with (2) ‘third order’ change in which a profound sense of failure contributes to a radical shift of beliefs and rules.
  • More recent scholarship identifies a range of concepts – including layering, drift, conversion, and displacement – to explain more gradual causes of profound changes to institutions.

These approaches identify a range of possible sources of measures:

  1. a combination of policy instruments that add up to overall change
  2. the same single change in many places
  3. change in relation to one measure, such as budgets
  4. a change in ideas, policy instruments and/ or rules.

As such, the potential for confusion is high when we include all such measures under the single banner of ‘policy change’.

  1. Look out for different measures

Spot the different ways in which scholars try to ‘operationalize’ and measure policy change, quantitatively and/ or qualitatively, with reference to four main categories.

  1. Size can be measured with reference to:
  • A comparison of old and new policy positions.
  • A change observed in a sample or whole population (using, for example, standard deviations from the mean).
  • An ‘ideal’ state, such as an industry or ‘best practice’ standard.
  1. Speed describes the amount of change that occurs over a specific interval of time, such as:
  • How long it takes for policy to change after a specific event or under specific conditions.
  • The duration of time between commencement and completion (often described as ‘sudden’ or ‘gradual’).
  • How this speed compares with comparable policy changes in other jurisdictions (often described with reference to ‘leaders’ and ‘laggards’).
  1. Direction describes the course of the path from one policy state to another. It is often described in comparison to:
  • An initial position in one jurisdiction (such as an expansion or contraction).
  • Policy or policy change in other jurisdictions (such as via ‘benchmarking’ or ‘league tables’)
  • An ‘ideal’ state (such as with reference to left or right wing aims).
  1. Substance relates to policy change in relations to:
  • Relatively tangible instruments such as legislation, regulation, or public expenditure.
  • More abstract concepts such as in relation to beliefs or goals.

Take home points for students

Be thoughtful when drawing comparisons between applications, drawn from many theoretical traditions, and addressing different research questions.  You can seek clarity by posing three questions:

  1. How clearly has the author defined the concept of policy change?
  2. How are the chosen theories and research questions likely to influence the author’s operationalization of policy change?
  3. How does the author operationalize policy change with respect to size, speed, direction, and/or substance?

However, you should also note that the choice of definition and theory may affect the meaning of measures such as size, speed, direction, and/or substance.

 

3 Comments

Filed under 1000 words, public policy

Understanding Public Policy 2nd edition

All going well, it will be out in November 2019. We are now at the proofing stage.

I have included below the summaries of the chapters (and each chapter should also have its own entry (or multiple entries) in the 1000 Words and 500 Words series).

2nd ed cover

titlechapter 1chapter 2chapter 3chapter 4.JPG

chapter 5

chapter 6chapter 7.JPG

chapter 8

chapter 9

chapter 10

chapter 11

chapter 12

chapter 13

 

2 Comments

Filed under 1000 words, 500 words, agenda setting, Evidence Based Policymaking (EBPM), Policy learning and transfer, public policy

Why don’t policymakers listen to your evidence?

Since 2016, my most common academic presentation to interdisciplinary scientist/ researcher audiences is a variant of the question, ‘why don’t policymakers listen to your evidence?’

I tend to provide three main answers.

1. Many policymakers have many different ideas about what counts as good evidence

Few policymakers know or care about the criteria developed by some scientists to describe a hierarchy of scientific evidence. For some scientists, at the top of this hierarchy is the randomised control trial (RCT) and the systematic review of RCTs, with expertise much further down the list, followed by practitioner experience and service user feedback near the bottom.

Yet, most policymakers – and many academics – prefer a wider range of sources of information, combining their own experience with information ranging from peer reviewed scientific evidence and the ‘grey’ literature, to public opinion and feedback from consultation.

While it may be possible to persuade some central government departments or agencies to privilege scientific evidence, they also pursue other key principles, such as to foster consensus driven policymaking or a shift from centralist to localist practices.

Consequently, they often only recommend interventions rather than impose one uniform evidence-based position. If local actors favour a different policy solution, we may find that the same type of evidence may have more or less effect in different parts of government.

2. Policymakers have to ignore almost all evidence and almost every decision taken in their name

Many scientists articulate the idea that policymakers and scientists should cooperate to use the best evidence to determine ‘what works’ in policy (in forums such as INGSA, European Commission, OECD). Their language is often reminiscent of 1950s discussions of the pursuit of ‘comprehensive rationality’ in policymaking.

The key difference is that EBPM is often described as an ideal by scientists, to be compared with the more disappointing processes they find when they engage in politics. In contrast, ‘comprehensive rationality’ is an ideal-type, used to describe what cannot happen, and the practical implications of that impossibility.

The ideal-type involves a core group of elected policymakers at the ‘top’, identifying their values or the problems they seek to solve, and translating their policies into action to maximise benefits to society, aided by neutral organisations gathering all the facts necessary to produce policy solutions. Yet, in practice, they are unable to: separate values from facts in any meaningful way; rank policy aims in a logical and consistent manner; gather information comprehensively, or possess the cognitive ability to process it.

Instead, Simon famously described policymakers addressing ‘bounded rationality’ by using ‘rules of thumb’ to limit their analysis and produce ‘good enough’ decisions. More recently, punctuated equilibrium theory uses bounded rationality to show that policymakers can only pay attention to a tiny proportion of their responsibilities, which limits their control of the many decisions made in their name.

More recent discussions focus on the ‘rational’ short cuts that policymakers use to identify good enough sources of information, combined with the ‘irrational’ ways in which they use their beliefs, emotions, habits, and familiarity with issues to identify policy problems and solutions (see this post on the meaning of ‘irrational’). Or, they explore how individuals communicate their narrow expertise within a system of which they have almost no knowledge. In each case, ‘most members of the system are not paying attention to most issues most of the time’.

This scarcity of attention helps explain, for example, why policymakers ignore most issues in the absence of a focusing event, policymaking organisations make searches for information which miss key elements routinely, and organisations fail to respond to events or changing circumstances proportionately.

In that context, attempts to describe a policy agenda focusing merely on ‘what works’ are based on misleading expectations. Rather, we can describe key parts of the policymaking environment – such as institutions, policy communities/ networks, or paradigms – as a reflection of the ways in which policymakers deal with their bounded rationality and lack of control of the policy process.

3. Policymakers do not control the policy process (in the way that a policy cycle suggests)

Scientists often appear to be drawn to the idea of a linear and orderly policy cycle with discrete stages – such as agenda setting, policy formulation, legitimation, implementation, evaluation, policy maintenance/ succession/ termination – because it offers a simple and appealing model which gives clear advice on how to engage.

Indeed, the stages approach began partly as a proposal to make the policy process more scientific and based on systematic policy analysis. It offers an idea of how policy should be made: elected policymakers in central government, aided by expert policy analysts, make and legitimise choices; skilful public servants carry them out; and, policy analysts assess the results with the aid of scientific evidence.

Yet, few policy theories describe this cycle as useful, while most – including the advocacy coalition framework , and the multiple streams approach – are based on a rejection of the explanatory value of orderly stages.

Policy theories also suggest that the cycle provides misleading practical advice: you will generally not find an orderly process with a clearly defined debate on problem definition, a single moment of authoritative choice, and a clear chance to use scientific evidence to evaluate policy before deciding whether or not to continue. Instead, the cycle exists as a story for policymakers to tell about their work, partly because it is consistent with the idea of elected policymakers being in charge and accountable.

Some scholars also question the appropriateness of a stages ideal, since it suggests that there should be a core group of policymakers making policy from the ‘top down’ and obliging others to carry out their aims, which does not leave room for, for example, the diffusion of power in multi-level systems, or the use of ‘localism’ to tailor policy to local needs and desires.

Now go to:

What can you do when policymakers ignore your evidence?

Further Reading

The politics of evidence-based policymaking

The politics of evidence-based policymaking: maximising the use of evidence in policy

Images of the policy process

How to communicate effectively with policymakers

Special issue in Policy and Politics called ‘Practical lessons from policy theories’, which includes how to be a ‘policy entrepreneur’.

See also the 750 Words series to explore the implications for policy analysis

11 Comments

Filed under Evidence Based Policymaking (EBPM), Psychology Based Policy Studies, Public health, public policy

Policy in 500 words: uncertainty versus ambiguity

In policy studies, there is a profound difference between uncertainty and ambiguity:

  • Uncertainty describes a lack of knowledge or a worrying lack of confidence in one’s knowledge.
  • Ambiguity describes the ability to entertain more than one interpretation of a policy problem.

Both concepts relate to ‘bounded rationality’: policymakers do not have the ability to process all information relevant to policy problems. Instead, they employ two kinds of shortcut:

  • ‘Rational’. Pursuing clear goals and prioritizing certain sources of information.
  • ‘Irrational’. Drawing on emotions, gut feelings, deeply held beliefs, and habits.

I make an artificially binary distinction, uncertain versus ambiguous, and relate it to another binary, rational versus irrational, to point out the pitfalls of focusing too much on one aspect of the policy process:

  1. Policy actors seek to resolve uncertainty by generating more information or drawing greater attention to the available information.

Actors can try to solve uncertainty by: (a) improving the quality of evidence, and (b) making sure that there are no major gaps between the supply of and demand for evidence. Relevant debates include: what counts as good evidence?, focusing on the criteria to define scientific evidence and their relationship with other forms of knowledge (such as practitioner experience and service user feedback), and what are the barriers between supply and demand?, focusing on the need for better ways to communicate.

  1. Policy actors seek to resolve ambiguity by focusing on one interpretation of a policy problem at the expense of another.

Actors try to solve ambiguity by exercising power to increase attention to, and support for, their favoured interpretation of a policy problem. You will find many examples of such activity spread across the 500 and 1000 words series:

A focus on reducing uncertainty gives the impression that policymaking is a technical process in which people need to produce the best evidence and deliver it to the right people at the right time.

In contrast, a focus on reducing ambiguity gives the impression of a more complicated and political process in which actors are exercising power to compete for attention and dominance of the policy agenda. Uncertainty matters, but primarily to describe the role of a complex policymaking system in which no actor truly understands where they are or how they should exercise power to maximise their success.

Further reading:

For a longer discussion, see Fostering Evidence-informed Policy Making: Uncertainty Versus Ambiguity (PDF)

Or, if you fancy it in French: Favoriser l’élaboration de politiques publiques fondées sur des données probantes : incertitude versus ambiguïté (PDF)

Framing

The politics of evidence-based policymaking

To Bridge the Divide between Evidence and Policy: Reduce Ambiguity as Much as Uncertainty

How to communicate effectively with policymakers: combine insights from psychology and policy studies

Here is the relevant opening section in UPP:

p234 UPP ambiguity

16 Comments

Filed under 500 words, agenda setting, Evidence Based Policymaking (EBPM), public policy, Storytelling

What do we need to know about the politics of evidence-based policymaking?

Today, I’m helping to deliver a new course – Engaging Policymakers Training Programme – piloted by the Alliance for Useful Evidence and the UCL. Right now, it’s for UCL staff (and mostly early career researchers). My bit is about how we can better understand the policy process so that we can engage in it more effectively.  I have reproduced the brief guide below (for my two 2-hour sessions as part of a wider block). If anyone else is delivering something similar, please let me know. We could compare notes. 

This module will be delivered in two parts to combine theory and practice

Part 1: What do we need to know about the politics of evidence-based policymaking?

Policy theories provide a wealth of knowledge about the role of evidence in policymaking systems. They prompt us to understand and respond to two key dynamics:

  1. Policymaker psychology. Policymakers combine rational and irrational shortcuts to gather information and make good enough decisions quickly. To appeal to rational shortcuts and minimise cognitive load, we reduce uncertainty by providing syntheses of the available evidence. To appeal to irrational shortcuts and engage emotional interest, we reduce ambiguity by telling stories or framing problems in specific ways.
  2. Complex policymaking environments. These processes take place in the context of a policy environment out of the control of individual policymakers. Environments consist of: many actors in many levels and types of government; engaging with institutions and networks, each with their own informal and formal rules; responding to socioeconomic conditions and events; and, learning how to engage with dominant ideas or beliefs about the nature of the policy problem. In other words, there is no policy cycle or obvious stage in which to get involved.

In this seminar, we discuss how to respond effectively to these dynamics. We focus on unresolved issues:

  1. Effective engagement with policymakers requires storytelling skills, but do we possess them?
  2. It requires a combination of evidence and emotional appeals, but is it ethical to do more than describe the evidence?
  3. The absence of a policy cycle, and presence of an ever-shifting context, requires us to engage for the long term, to form alliances, learn the rules, and build up trust in the messenger. However, do we have and how should we invest the time?

The format will be relatively informal. Cairney will begin by making some introductory points (not a powerpoint driven lecture) and encourage participants to relate the three questions to their research and engagement experience.

Gateway to further reading:

  • Paul Cairney and Richard Kwiatkowski (2017) ‘How to communicate effectively with policymakers: combine insights from psychology and policy studies’, Palgrave Communications
  • Paul Cairney and Kathryn Oliver (2017) ‘Evidence-based policymaking is not like evidence-based medicine, so how far should you go to bridge the divide between evidence and policy?’ Health Research Policy and Systems (HARPS), DOI: 10.1186/s12961-017-0192-x
  • Paul Cairney, Kathryn Oliver, and Adam Wellstead (2016) ‘To Bridge the Divide between Evidence and Policy: Reduce Ambiguity as Much as Uncertainty’, Public Administration Review, Early View (forthcoming) DOI:10.1111/puar.12555 PDF

Part 2: How can we respond pragmatically and effectively to the politics of EBPM?

In this seminar, we move from abstract theory and general advice to concrete examples and specific strategies. Each participant should come prepared to speak about their research and present a theoretically informed policy analysis in 3 minutes (without the aid of powerpoint). Their analysis should address:

  1. What policy problem does my research highlight?
  2. What are the most technically and politically feasible solutions?
  3. How should I engage in the policy process to highlight these problems and solutions?

After each presentation, each participant should be prepared to ask questions about the problem raised and the strategy to engage. Finally, to encourage learning, we will reflect on the memorability and impact of presentations.

Powerpoint: Paul Cairney A4UE UCL 2017

1 Comment

Filed under Evidence Based Policymaking (EBPM), Psychology Based Policy Studies, public policy