Tag Archives: values

Policy Analysis in 750 words: William Dunn (2017) Public Policy Analysis

Please see the Policy Analysis in 750 words series overview before reading the summary. This book is a whopper, with almost 500 pages and 101 (excellent) discussions of methods, so 800 words over budget seems OK to me. If you disagree, just read every second word.  By the time you reach the cat hanging in there baby you are about 300 (150) words away from the end.

Dunn 2017 cover

William Dunn (2017) Public Policy Analysis 6th Ed. (Routledge)

Policy analysis is a process of multidisciplinary inquiry aiming at the creation, critical assessment, and communication of policy-relevant knowledge … to solve practical problemsIts practitioners are free to choose among a range of scientific methods, qualitative as well as quantitative, and philosophies of science, so long as these yield reliable knowledge’ (Dunn, 2017: 2-3).

Dunn (2017: 4) describes policy analysis as pragmatic and eclectic. It involves synthesising policy relevant (‘usable’) knowledge, and combining it with experience and ‘practical wisdom’, to help solve problems with analysis that people can trust.

This exercise is ‘descriptive’, to define problems, and ‘normative’, to decide how the world should be and how solutions get us there (as opposed to policy studies/ research seeking primarily to explain what happens).

Dunn contrasts the ‘art and craft’ of policy analysts with other practices, including:

  1. The idea of ‘best practice’ characterised by 5-step plans.
  • In practice, analysis is influenced by: the cognitive shortcuts that analysts use to gather information; the role they perform in an organisation; the time constraints and incentive structures in organisations and political systems; the expectations and standards of their profession; and, the need to work with teams consisting of many professions/ disciplines (2017: 15-6)
  • The cost (in terms of time and resources) of conducting multiple research and analytical methods is high, and highly constrained in political environments (2017: 17-8; compare with Lindblom)
  1. The too-narrow idea of evidence-based policymaking
  • The naïve attachment to ‘facts speak for themselves’ or ‘knowledge for its own sake’ undermines a researcher’s ability to adapt well to the evidence-demands of policymakers (2017: 68; 4 compare with Why don’t policymakers listen to your evidence?).

To produce ‘policy-relevant knowledge’ requires us to ask five questions before (Qs1-3) and after (Qs4-5) policy intervention (2017: 5-7; 54-6):

  1. What is the policy problem to be solved?
  • For example, identify its severity, urgency, cause, and our ability to solve it.
  • Don’t define the wrong problem, such as by oversimplifying or defining it with insufficient knowledge.
  • Key aspects of problems including ‘interdependency’ (each problem is inseparable from a host of others, and all problems may be greater than the sum of their parts), ‘subjectivity’ and ‘artificiality’ (people define problems), ‘instability’ (problems change rather than being solved), and ‘hierarchy’ (which level or type of government is responsible) (2017: 70; 75).
  • Problems vary in terms of how many relevant policymakers are involved, how many solutions are on the agenda, the level of value conflict, and the unpredictability of outcomes (high levels suggest ‘wicked’ problems, and low levels ‘tame’) (2017: 75)
  • ‘Problem-structuring methods’ are crucial, to: compare ways to define or interpret a problem, and ward against making too many assumptions about its nature and cause; produce models of cause-and-effect; and make a problem seem solve-able, such as by placing boundaries on its coverage. These methods foster creativity, which is useful when issues seem new and ambiguous, or new solutions are in demand (2017: 54; 69; 77; 81-107).
  • Problem definition draws on evidence, but is primarily the exercise of power to reduce ambiguity through argumentation, such as when defining poverty as the fault of the poor, the elite, the government, or social structures (2017: 79; see Stone).
  1. What effect will each potential policy solution have?
  • Many ‘forecasting’ methods can help provide ‘plausible’ predictions about the future effects of current/ alternative policies (Chapter 4 contains a huge number of methods).
  • ‘Creativity, insight, and the use of tacit knowledge’ may also be helpful (2017: 55).
  • However, even the most-effective expert/ theory-based methods to extrapolate from the past are flawed, and it is important to communicate levels of uncertainty (2017: 118-23; see Spiegelhalter).
  1. Which solutions should we choose, and why?
  • ‘Prescription’ methods help provide a consistent way to compare each potential solution, in terms of its feasibility and predicted outcome, rather than decide too quickly that one is superior (2017: 55; 190-2; 220-42).
  • They help to combine (a) an estimate of each policy alternative’s outcome with (b) a normative assessment.
  • Normative assessments are based on values such as ‘equality, efficiency, security, democracy, enlightenment’ and beliefs about the preferable balance between state, communal, and market/ individual solutions (2017: 6; 205 see Weimer & Vining, Meltzer & Schwartz, and Stone on the meaning of these values).
  • For example, cost benefit analysis (CBA) is an established – but problematic – economics method based on finding one metric – such as a $ value – to predict and compare outcomes (2017: 209-17; compare Weimer & Vining, Meltzer & Schwartz, and Stone)
  • Cost effectiveness analysis uses a $ value for costs, but compared with other units of measurement for benefits (such as outputs per $) (2017: 217-9)
  • Although such methods help us combine information and values to compare choices, note the inescapable role of power to decide whose values (and which outcomes, affecting whom) matter (2017: 204)
  1. What were the policy outcomes?
  • ‘Monitoring’ methods help identify (say): levels of compliance with regulations, if resources and services reach ‘target groups’, if money is spent correctly (such as on clearly defined ‘inputs’ such as public sector wages), and if we can make a causal link between the policy inputs/ activities/ outputs and outcomes (2017: 56; 251-5)
  • Monitoring is crucial because it is so difficult to predict policy success, and unintended consequences are almost inevitable (2017: 250).
  • However, the data gathered are usually no more than proxy indicators of outcomes. Further, the choice of indicators reflect what is available, ‘particular social values’, and ‘the political biases of analysts’ (2017: 262)
  • The idea of ‘evidence based policy’ is linked strongly to the use of experiments and systematic review to identify causality (2017: 273-6; compare with trial-and-error learning in Gigerenzer, complexity theory, and Lindblom).
  1. Did the policy solution work as intended? Did it improve policy outcomes?
  • Although we frame policy interventions as ‘solutions’, few problems are ‘solved’. Instead, try to measure the outcomes and the contribution of your solution, and note that evaluations of success and ‘improvement’ are contested (2017: 57; 332-41).  
  • Policy evaluation is not an objective process in which we can separate facts from values.
  • Rather, values and beliefs are part of the criteria we use to gauge success (and even their meaning is contested – 2017: 322-32).
  • We can gather facts about the policy process, and the impacts of policy on people, but this information has little meaning until we decide whose experiences matter.

Overall, the idea of ‘ex ante’ (forecasting) policy analysis is a little misleading, since policymaking is continuous, and evaluations of past choices inform current choices.

Policy analysis methods are ‘interdependent’, and ‘knowledge transformations’ describes the impact of knowledge regarding one question on the other four (2017: 7-13; contrast with Meltzer & Schwartz, Thissen & Walker).

Developing arguments and communicating effectively

Dunn (2017: 19-21; 348-54; 392) argues that ‘policy argumentation’ and the ‘communication of policy-relevant knowledge’ are central to policymaking’ (See Chapter 9 and Appendices 1-4 for advice on how to write briefs, memos, and executive summaries and prepare oral testimony).

He identifies seven elements of a ‘policy argument’ (2017: 19-21; 348-54), including:

  • The claim itself, such as a description (size, cause) or evaluation (importance, urgency) of a problem, and prescription of a solution
  • The things that support it (including reasoning, knowledge, authority)
  • Incorporating the things that could undermine it (including any ‘qualifier’, the communication of uncertainty about current knowledge, and counter-arguments).

The key stages of communication (2017: 392-7; 405; 432) include:

  1. ‘Analysis’, focusing on ‘technical quality’ (of the information and methods used to gather it), meeting client expectations, challenging the ‘status quo’, albeit while dealing with ‘political and organizational constraints’ and suggesting something that can actually be done.
  2. ‘Documentation’, focusing on synthesising information from many sources, organising it into a coherent argument, translating from jargon or a technical language, simplifying, summarising, and producing user-friendly visuals.
  3. ‘Utilization’, by making sure that (a) communications are tailored to the audience (its size, existing knowledge of policy and methods, attitude to analysts, and openness to challenge), and (b) the process is ‘interactive’ to help analysts and their audiences learn from each other.

 

hang-in-there-baby

 

Policy analysis and policy theory: systems thinking, evidence based policymaking, and policy cycles

Dunn (2017: 31-40) situates this discussion within a brief history of policy analysis, which culminated in new ways to express old ambitions, such as to:

  1. Use ‘systems thinking’, to understand the interdependence between many elements in complex policymaking systems (see also socio-technical and socio-ecological systems).
  • Note the huge difference between (a) policy analysis discussions of ‘systems thinking’ built on the hope that if we can understand them we can direct them, and (b) policy theory discussions that emphasise ‘emergence’ in the absence of central control (and presence of multi-centric policymaking).
  • Also note that Dunn (2017: 73) describes policy problems – rather than policymaking – as complex systems. I’ll write another post (short, I promise) on the many different (and confusing) ways to use the language of complexity.
  1. Promote ‘evidence based policy, as the new way to describe an old desire for ‘technocratic’ policymaking that accentuates scientific evidence and downplays politics and values (see also 2017: 60-4).

In that context, see Dunn’s (47-52) discussion of comprehensive versus bounded rationality:

  • Note the idea of ‘erotetic rationality’ in which people deal with their lack of knowledge of a complex world by giving up on the idea of certainty (accepting their ‘ignorance’), in favour of a continuous process of ‘questioning and answering’.
  • This approach is a pragmatic response to the lack of order and predictability of policymaking systems, which limits the effectiveness of a rigid attachment to ‘rational’ 5 step policy analyses (compare with Meltzer & Schwartz).

Dunn (2017: 41-7) also provides an unusually useful discussion of the policy cycle. Rather than seeing it as a mythical series of orderly stages, Dunn highlights:

  1. Lasswell’s original discussion of policymaking functions (or functional requirements of policy analysis, not actual stages to observe), including: ‘intelligence’ (gathering knowledge), ‘promotion’ (persuasion and argumentation while defining problems), ‘prescription’, ‘invocation’ and ‘application’ (to use authority to make sure that policy is made and carried out), and ‘appraisal’ (2017: 42-3).
  2. The constant interaction between all notional ‘stages’ rather than a linear process: attention to a policy problem fluctuates, actors propose and adopt solutions continuously, actors are making policy (and feeding back on its success) as they implement, evaluation (of policy success) is not a single-shot document, and previous policies set the agenda for new policy (2017: 44-5).

In that context, it is no surprise that the impact of a single policy analyst is usually minimal (2017: 57). Sorry to break it to you. Hang in there, baby.

hang-in-there-baby

 

11 Comments

Filed under 750 word policy analysis, public policy

Policy Analysis in 750 words: Deborah Stone (2012) Policy Paradox

Please see the Policy Analysis in 750 words series overview before reading the summary. This post is 750 words plus a bonus 750 words plus some further reading that doesn’t count in the word count even though it does.

Stone policy paradox 3rd ed cover

Deborah Stone (2012) Policy Paradox: The Art of Political Decision Making 3rd edition (Norton)

‘Whether you are a policy analyst, a policy researcher, a policy advocate, a policy maker, or an engaged citizen, my hope for Policy Paradox is that it helps you to go beyond your job description and the tasks you are given – to think hard about your own core values, to deliberate with others, and to make the world a better place’ (Stone, 2012: 15)

Stone (2012: 379-85) rejects the image of policy analysis as a ‘rationalist’ project, driven by scientific and technical rules, and separable from politics. Rather, every policy analyst’s choice is a political choice – to define a problem and solution, and in doing so choosing how to categorise people and behaviour – backed by strategic persuasion and storytelling.

The Policy Paradox: people entertain multiple, contradictory, beliefs and aims

Stone (2012: 2-3) describes the ways in which policy actors compete to define policy problems and public policy responses. The ‘paradox’ is that it is possible to define the same policies in contradictory ways.

‘Paradoxes are nothing but trouble. They violate the most elementary principle of logic: something can’t be two different things at once. Two contradictory interpretations can’t both be true. A paradox is just such an impossible situation, and political life is full of them’ (Stone, 2012: 2).

This paradox does not refer simply to a competition between different actors to define policy problems and the success or failure of solutions. Rather:

  • The same actor can entertain very different ways to understand problems, and can juggle many criteria to decide that a policy outcome was a success and a failure (2012: 3).
  • Surveys of the same population can report contradictory views – encouraging a specific policy response and its complete opposite – when asked different questions in the same poll (2012: 4; compare with Riker)

Policy analysts: you don’t solve the Policy Paradox with a ‘rationality project’

Like many posts in this series (Smith, Bacchi, Hindess), Stone (2010: 9-11) rejects the misguided notion of objective scientists using scientific methods to produce one correct answer (compare with Spiegelhalter and Weimer & Vining). A policy paradox cannot be solved by ‘rational, analytical, and scientific methods’ because:

Further, Stone (2012: 10-11) rejects the over-reliance, in policy analysis, on the misleading claim that:

  • policymakers are engaging primarily with markets rather than communities (see 2012: 35 on the comparison between a ‘market model’ and ‘polis model’),
  • economic models can sum up political life, and
  • cost-benefit-analysis can reduce a complex problem into the sum of individual preferences using a single unambiguous measure.

Rather, many factors undermine such simplicity:

  1. People do not simply act in their own individual interest. Nor can they rank-order their preferences in a straightforward manner according to their values and self-interest.
  • Instead, they maintain a contradictory mix of objectives, which can change according to context and their way of thinking – combining cognition and emotion – when processing information (2012: 12; 30-4).
  1. People are social actors. Politics is characterised by ‘a model of community where individuals live in a dense web of relationships, dependencies, and loyalties’ and exercise power with reference to ideas as much as material interests (2012: 10; 20-36; compare with Ostrom, more Ostrom, and Lubell; and see Sousa on contestation).
  2. Morals and emotions matter. If people juggle contradictory aims and measures of success, then a story infused with ‘metaphor and analogy’, and appealing to values and emotions, prompts people ‘to see a situation as one thing rather than another’ and therefore draw attention to one aim at the expense of the others (2012: 11; compare with Gigerenzer).

Policy analysis reconsidered: the ambiguity of values and policy goals

Stone (2012: 14) identifies the ambiguity of the criteria for success used in 5-step policy analyses. They do not form part of a solely technical or apolitical process to identify trade-offs between well-defined goals (compare Bardach, Weimer and Vining, and Mintrom). Rather, ‘behind every policy issue lurks a contest over conflicting, though equally plausible, conceptions of the same abstract goal or value’ (2012: 14). Examples of competing interpretations of valence issues include definitions of:

  1. Equity, according to: (a) which groups should be included, how to assess merit, how to identify key social groups, if we should rank populations within social groups, how to define need and account for different people placing different values on a good or service, (b) which method of distribution to use (competition, lottery, election), and (c) how to balance individual, communal, and state-based interventions (2012: 39-62).
  2. Efficiency, to use the least resources to produce the same objective, according to: (a) who determines the main goal and how to balance multiple objectives, (a) who benefits from such actions, and (c) how to define resources while balancing equity and efficiency – for example, does a public sector job and a social security payment represent a sunk cost to the state or a social investment in people? (2012: 63-84).
  3. Welfare or Need, according to factors including (a) the material and symbolic value of goods, (b) short term support versus a long term investment in people, (c) measures of absolute poverty or relative inequality, and (d) debates on ‘moral hazard’ or the effect of social security on individual motivation (2012: 85-106)
  4. Liberty, according to (a) a general balancing of freedom from coercion and freedom from the harm caused by others, (b) debates on individual and state responsibilities, and (c) decisions on whose behaviour to change to reduce harm to what populations (2012: 107-28)
  5. Security, according to (a) our ability to measure risk scientifically (see Spiegelhalter and Gigerenzer), (b) perceptions of threat and experiences of harm, (c) debates on how much risk to safety to tolerate before intervening, (d) who to target and imprison, and (e) the effect of surveillance on perceptions of democracy (2012: 129-53).

Policy analysis as storytelling for collective action

Actors use policy-relevant stories to influence the ways in which their audience understands (a) the nature of policy problems and feasibility of solutions, within (b) a wider context of policymaking in which people contest the proper balance between state, community, and market action. Stories can influence key aspects of collective action, including:

  1. Defining interests and mobilising actors, by drawing attention to – and framing – issues with reference to an imagined social group and its competition (e.g. the people versus the elite; the strivers versus the skivers) (2012: 229-47)
  2. Making decisions, by framing problems and solutions (2012: 248-68). Stone (2012: 260) contrasts the ‘rational-analytic model’ with real-world processes in which actors deliberately frame issues ambiguously, shift goals, keep feasible solutions off the agenda, and manipulate analyses to make their preferred solution seem the most efficient and popular.
  3. Defining the role and intended impact of policies, such as when balancing punishments versus incentives to change behaviour, or individual versus collective behaviour (2012: 271-88).
  4. Setting and enforcing rules (see institutions), in a complex policymaking system where a multiplicity of rules interact to produce uncertain outcomes, and a powerful narrative can draw attention to the need to enforce some rules at the expense of others (2012: 289-310).
  5. Persuasion, drawing on reason, facts, and indoctrination. Stone (2012: 311-30) highlights the context in which actors construct stories to persuade: people engage emotionally with information, people take certain situations for granted even though they produce unequal outcomes, facts are socially constructed, and there is unequal access to resources – held in particular by government and business – to gather and disseminate evidence.
  6. Defining human and legal rights, when (a) there are multiple, ambiguous, and intersecting rights (in relation to their source, enforcement, and the populations they serve) (b) actors compete to make sure that theirs are enforced, (c) inevitably at the expense of others, because the enforcement of rights requires a disproportionate share of limited resources (such as policymaker attention and court time) (2012: 331-53)
  7. Influencing debate on the powers of each potential policymaking venue – in relation to factors including (a) the legitimate role of the state in market, community, family, and individual life, (b) how to select leaders, (c) the distribution of power between levels and types of government – and who to hold to account for policy outcomes (2012: 354-77).

Key elements of storytelling include:

  1. Symbols, which sum up an issue or an action in a single picture or word (2012:157-8)
  2. Characters, such as heroes or villain, who symbolise the cause of a problem or source of solution (2012:159)
  3. Narrative arcs, such as a battle by your hero to overcome adversity (2012:160-8)
  4. Synecdoche, to highlight one example of an alleged problem to sum up its whole (2012: 168-71; compare the ‘welfare queen’ example with SCPD)
  5. Metaphor, to create an association between a problem and something relatable, such as a virus or disease, a natural occurrence (e.g. earthquake), something broken, something about to burst if overburdened, or war (2012: 171-78; e.g. is crime a virus or a beast?)
  6. Ambiguity, to give people different reasons to support the same thing (2012: 178-82)
  7. Using numbers to tell a story, based on political choices about how to: categorise people and practices, select the measures to use, interpret the figures to evaluate or predict the results, project the sense that complex problems can be reduced to numbers, and assign authority to the counters (2012:183-205; compare with Speigelhalter)
  8. Assigning Causation, in relation to categories including accidental or natural, ‘mechanical’ or automatic (or in relation to institutions or systems), and human-guided causes that have intended or unintended consequences (such as malicious intent versus recklessness)
  • ‘Causal strategies’ include to: emphasise a natural versus human cause, relate it to ‘bad apples’ rather than systemic failure, and suggest that the problem was too complex to anticipate or influence
  • Actors use these arguments to influence rules, assign blame, identify ‘fixers’, and generate alliances among victims or potential supporters of change (2012: 206-28).

Wider Context and Further Reading: 1. Policy analysis

This post connects to several other 750 Words posts, which suggest that facts don’t speak for themselves. Rather, effective analysis requires you to ‘tell your story’, in a concise way, tailored to your audience.

For example, consider two ways to establish cause and effect in policy analysis:

One is to conduct and review multiple randomised control trials.

Another is to use a story of a hero or a villain (perhaps to mobilise actors in an advocacy coalition).

  1. Evidence-based policymaking

Stone (2012: 10) argues that analysts who try to impose one worldview on policymaking will find that ‘politics looks messy, foolish, erratic, and inexplicable’. For analysts, who are more open-minded, politics opens up possibilities for creativity and cooperation (2012: 10).

This point is directly applicable to the ‘politics of evidence based policymaking’. A common question to arise from this worldview is ‘why don’t policymakers listen to my evidence?’ and one answer is ‘you are asking the wrong question’.

  1. Policy theories highlight the value of stories (to policy analysts and academics)

Policy problems and solutions necessarily involve ambiguity:

  1. There are many ways to interpret problems, and we resolve such ambiguity by exercising power to attract attention to one way to frame a policy problem at the expense of others (in other words, not with reference to one superior way to establish knowledge).
  1. Policy is actually a collection of – often contradictory – policy instruments and institutions, interacting in complex systems or environments, to produce unclear messages and outcomes. As such, what we call ‘public policy’ (for the sake of simplicity) is subject to interpretation and manipulation as it is made and delivered, and we struggle to conceptualise and measure policy change. Indeed, it makes more sense to describe competing narratives of policy change.

box 13.1 2nd ed UPP

  1. Policy theories and storytelling

People communicate meaning via stories. Stories help us turn (a) a complex world, which provides a potentially overwhelming amount of information, into (b) something manageable, by identifying its most relevant elements and guiding action (compare with Gigerenzer on heuristics).

The Narrative Policy Framework identifies the storytelling strategies of actors seeking to exploit other actors’ cognitive shortcuts, using a particular format – containing the setting, characters, plot, and moral – to focus on some beliefs over others, and reinforce someone’s beliefs enough to encourage them to act.

Compare with Tuckett and Nicolic on the stories that people tell to themselves.

 

 

13 Comments

Filed under 750 word policy analysis, Evidence Based Policymaking (EBPM), Psychology Based Policy Studies, public policy, Storytelling

#EU4Facts: 3 take-home points from the JRC annual conference

See EU4FACTS: Evidence for policy in a post-fact world

The JRC’s annual conference has become a key forum in which to discuss the use of evidence in policy. At this scale, in which many hundreds of people attend plenary discussions, it feels like an annual mass rally for science; a ‘call to arms’ to protect the role of science in the production of evidence, and the protection of evidence in policy deliberation. There is not much discussion of storytelling, but we tell each other a fairly similar story about our fears for the future unless we act now.

Last year, the main story was of fear for the future of heroic scientists: the rise of Trump and the Brexit vote prompted many discussions of post-truth politics and reduced trust in experts. An immediate response was to describe attempts to come together, and stick together, to support each other’s scientific endeavours during a period of crisis. There was little call for self-analysis and reflection on the contribution of scientists and experts to barriers between evidence and policy.

This year was a bit different. There was the same concern for reduced trust in science, evidence, and/ or expertise, and some references to post-truth politics and populism, but with some new voices describing the positive value of politics, often when discussing the need for citizen engagement, and of the need to understand the relationship between facts, values, and politics.

For example, a panel on psychology opened up the possibility that we might consider our own politics and cognitive biases while we identify them in others, and one panellist spoke eloquently about the importance of narrative and storytelling in communicating to audiences such as citizens and policymakers.

A focus on narrative is not new, but it provides a challenging agenda when interacting with a sticky story of scientific objectivity. For the unusually self-reflective, it also reminds us that our annual discussions are not particularly scientific; the usual rules to assess our statements do not apply.

As in studies of policymaking, we can say that there is high support for such stories when they remain vague and driven more by emotion than the pursuit of precision. When individual speakers try to make sense of the same story, they do it in different – and possibly contradictory – ways. As in policymaking, the need to deliver something concrete helps focus the mind, and prompts us to make choices between competing priorities and solutions.

I describe these discussions in two ways: tables, in which I try to boil down each speaker’s speech into a sentence or two (you can get their full details in the programme and the speaker bios); and a synthetic discussion of the top 3 concerns, paraphrasing and combining arguments from many speakers:

1. What are facts?

The key distinction began as between politics-values-facts which is impossible to maintain in practice.

Yet, subsequent discussion revealed a more straightforward distinction between facts and opinion, ‘fake news’, and lies. The latter sums up an ever-present fear of the diminishing role of science in an alleged ‘post truth’ era.

2. What exactly is the problem, and what is its cause?

The tables below provide a range of concerns about the problem, from threats to democracy to the need to communicate science more effectively. A theme of growing importance is the need to deal with the cognitive biases and informational shortcuts of people receiving evidence: communicate with reference to values, beliefs, and emotions; build up trust in your evidence via transparency and reliability; and, be prepared to discuss science with citizens and to be accountable for your advice. There was less discussion of the cognitive biases of the suppliers of evidence.

3. What is the role of scientists in relation to this problem?

Not all speakers described scientists as the heroes of this story:

  • Some described scientists as the good people acting heroically to change minds with facts.
  • Some described their potential to co-produce important knowledge with citizens (although primarily with like-minded citizens who learn the value of scientific evidence?).
  • Some described the scientific ego as a key barrier to action.
  • Some identified their low confidence to engage, their uncertainty about what to do with their evidence, and/ or their scientist identity which involves defending science as a cause/profession and drawing the line between providing information and advocating for policy. This hope to be an ‘honest broker’ was pervasive in last year’s conference.
  • Some (rightly) rejected the idea of separating facts/ values and science/ politics, since evidence is never context free (and gathering evidence without thought to context is amoral).

Often in such discussions it is difficult to know if some scientists are naïve actors or sophisticated political strategists, because their public statements could be identical. For the former, an appeal to objective facts and the need to privilege science in EBPM may be sincere. Scientists are, and should be, separate from/ above politics. For the latter, the same appeal – made again and again – may be designed to energise scientists and maximise the role of science in politics.

Yet, energy is only the starting point, and it remains unclear how exactly scientists should communicate and how to ‘know your audience’: would many scientists know who to speak to, in governments or the Commission, if they had something profoundly important to say?

Keynotes and introductory statements from panel chairs
Vladimír Šucha: We need to understand the relationship between politics, values, and facts. Facts are not enough. To make policy effectively, we need to combine facts and values.
Tibor Navracsics: Politics is swayed more by emotions than carefully considered arguments. When making policy, we need to be open and inclusive of all stakeholders (including citizens), communicate facts clearly and at the right time, and be aware of our own biases (such as groupthink).
Sir Peter Gluckman: ‘Post-truth’ politics is not new, but it is pervasive and easier to achieve via new forms of communication. People rely on like-minded peers, religion, and anecdote as forms of evidence underpinning their own truth. When describing the value of science, to inform policy and political debate, note that it is more than facts; it is a mode of thinking about the world, and a system of verification to reduce the effect of personal and group biases on evidence production. Scientific methods help us define problems (e.g. in discussion of cause/ effect) and interpret data. Science advice involves expert interpretation, knowledge brokerage, a discussion of scientific consensus and uncertainty, and standing up for the scientific perspective.
Carlos Moedas: Safeguard trust in science by (1) explaining the process you use to come to your conclusions; (2) provide safe and reliable places for people to seek information (e.g. when they Google); (3) make sure that science is robust and scientific bodies have integrity (such as when dealing with a small number of rogue scientists).
Pascal Lamy: 1. ‘Deep change or slow death’ We need to involve more citizens in the design of publicly financed projects such as major investments in science. Many scientists complain that there is already too much political interference, drowning scientists in extra work. However, we will face a major backlash – akin to the backlash against ‘globalisation’ – if we do not subject key debates on the future of science and technology-driven change (e.g. on AI, vaccines, drone weaponry) to democratic processes involving citizens. 2. The world changes rapidly, and evidence gathering is context-dependent, so we need to monitor regularly the fitness of our scientific measures (of e.g. trade).
Jyrki Katainen: ‘Wicked problems’ have no perfect solution, so we need the courage to choose the best imperfect solution. Technocratic policymaking is not the solution; it does not meet the democratic test. We need the language of science to be understandable to citizens: ‘a new age of reason reconciling the head and heart’.

Panel: Why should we trust science?
Jonathan Kimmelman: Some experts make outrageous and catastrophic claims. We need a toolbox to decide which experts are most reliable, by comparing their predictions with actual outcomes. Prompt them to make precise probability statements and test them. Only those who are willing to be held accountable should be involved in science advice.
Johannes Vogel: We should devote 15% of science funding to public dialogue. Scientific discourse, and a science-literature population, is crucial for democracy. EU Open Society Policy is a good model for stakeholder inclusiveness.
Tracey Brown: Create a more direct link between society and evidence production, to ensure discussions involve more than the ‘usual suspects’. An ‘evidence transparency framework’ helps create a space in which people can discuss facts and values. ‘Be open, speak human’ describes showing people how you make decisions. How can you expect the public to trust you if you don’t trust them enough to tell them the truth?
Francesco Campolongo: Claude Juncker’s starting point is that Commission proposals and activities should be ‘based on sound scientific evidence’. Evidence comes in many forms. For example, economic models provide simplified versions of reality to make decisions. Economic calculations inform profoundly important policy choices, so we need to make the methodology transparent, communicate probability, and be self-critical and open to change.

Panel: the politician’s perspective
Janez Potočnik: The shift of the JRC’s remit allowed it to focus on advocating science for policy rather than policy for science. Still, such arguments need to be backed by an economic argument (this policy will create growth and jobs). A narrow focus on facts and data ignores the context in which we gather facts, such as a system which undervalues human capital and the environment.
Máire Geoghegan-Quinn: Policy should be ‘solidly based on evidence’ and we need well-communicated science to change the hearts and minds of people who would otherwise rely on their beliefs. Part of the solution is to get, for example, kids to explain what science means to them.

Panel: Redesigning policymaking using behavioural and decision science
Steven Sloman: The world is complex. People overestimate their understanding of it, and this illusion is burst when they try to explain its mechanisms. People who know the least feel the strongest about issues, but if you ask them to explain the mechanisms their strength of feeling falls. Why? People confuse their knowledge with that of their community. The knowledge is not in their heads, but communicated across groups. If people around you feel they understand something, you feel like you understand, and people feel protective of the knowledge of their community. Implications? 1. Don’t rely on ‘bubbles’; generate more diverse and better coordinated communities of knowledge. 2. Don’t focus on giving people full information; focus on the information they need at the point of decision.
Stephan Lewandowsky: 97% of scientists agree that human-caused climate change is a problem, but the public thinks it’s roughly 50-50. We have a false-balance problem. One solution is to ‘inoculate’ people against its cause (science denial). We tell people the real figures and facts, warn them of the rhetorical techniques employed by science denialists (e.g. use of false experts on smoking), and mock the false balance argument. This allows you to reframe the problem as an investment in the future, not cost now (and find other ways to present facts in a non-threatening way). In our lab, it usually ‘neutralises’ misinformation, although with the risk that a ‘corrective message’ to challenge beliefs can entrench them.
Françoise Waintrop: It is difficult to experiment when public policy is handed down from on high. Or, experimentation is alien to established ways of thinking. However, our 12 new public innovation labs across France allow us to immerse ourselves in the problem (to define it well) and nudge people to action, working with their cognitive biases.
Simon Kuper: Stories combine facts and values. To change minds: persuade the people who are listening, not the sceptics; find go-betweens to link suppliers and recipients of evidence; speak in stories, not jargon; don’t overpromise the role of scientific evidence; and, never suggest science will side-line human beings (e.g. when technology costs jobs).

Panel: The way forward
Jean-Eric Paquet: We describe ‘fact based evidence’ rather than ‘science based’. A key aim is to generate ‘ownership’ of policy by citizens. Politicians are more aware of their cognitive biases than we technocrats are.
Anne Bucher: In the European Commission we used evidence initially to make the EU more accountable to the public, via systematic impact assessment and quality control. It was a key motivation for better regulation. We now focus more on generating inclusive and interactive ways to consult stakeholders.
Ann Mettler: Evidence-based policymaking is at the heart of democracy. How else can you legitimise your actions? How else can you prepare for the future? How else can you make things work better? Yet, a lot of our evidence presentation is so technical; even difficult for specialists to follow. The onus is on us to bring it to life, to make it clearer to the citizen and, in the process, defend scientists (and journalists) during a period in which Western democracies seem to be at risk from anti-democratic forces.
Mariana Kotzeva: Our facts are now considered from an emotional and perception point of view. The process does not just involve our comfortable circle of experts; we are now challenged to explain our numbers. Attention to our numbers can be unpredictable (e.g. on migration). We need to build up trust in our facts, partly to anticipate or respond to the quick spread of poor facts.
Rush Holt: In society we can find the erosion of the feeling that science is relevant to ‘my life’, and few US policymakers ask ‘what does science say about this?’ partly because scientists set themselves above politics. Politicians have had too many bad experiences with scientists who might say ‘let me explain this to you in a way you can understand’. Policy is not about science based evidence; more about asking a question first, then asking what evidence you need. Then you collect evidence in an open way to be verified.

Phew!

That was 10 hours of discussion condensed into one post. If you can handle more discussion from me, see:

Psychology and policymaking: Three ways to communicate more effectively with policymakers

The role of evidence in policy: EBPM and How to be heard  

Practical Lessons from Policy Theories

The generation of many perspectives to help us understand the use of evidence

How to be an ‘entrepreneur’ when presenting evidence

 

 

 

2 Comments

Filed under Evidence Based Policymaking (EBPM), Psychology Based Policy Studies, public policy, Storytelling

Can you separate the facts from your beliefs when making policy?

A key argument in policy studies is that it is impossible to separate facts and values when making policy. We often treat our beliefs as facts, or describe certain facts as objective, but perhaps only to simplify our lives or support a political strategy (a ‘self-evident’ fact is very handy for an argument). People make empirical claims infused with their values and often fail to realise just how their values or assumptions underpin their claims.

This is not an easy argument to explain. One strategy is to use extreme examples to make the point. For example, Herbert Simon points to Hitler’s Mein Kampf as the ultimate example of value-based claims masquerading as facts. We can also draw on some embarrassing historic academic research which states that the evidence exists to show that men are more intelligent than women and some races are demonstrably superior to others. In such cases, we would point out, for example, that the design of the research helped produce such conclusions: our values underpin our assumptions about how to measure intelligence or other measures of superiority.

‘Wait a minute, though’ (you might say). “What about simple examples in which you can state facts with relative certainty – such as the statement ‘there are 449 words in this post’”. ‘Fair enough’, I’d say (you will have to speak with a philosopher to get a better debate about the meaning of your 449 words claim). But this statement doesn’t take you far in policy terms. Instead, you’d want to say that there are too many or too few words, before you decided what to do about it.

In that sense, we have the most practical explanation of the unclear fact/ value distinction: the use of facts in policy is to underpin evaluations based on values. For example, we might point to the routine uses of data to argue that a public service is in ‘crisis’ or that there is a public health related epidemic. We might argue that people only talk about ‘policy problems’ they think we have a duty to solve them.

Or, facts and values often seem the hardest to separate when we evaluate the success and failure of policy solutions, since the measures used for evaluation are as political as any other part of the policy process. The gathering and presentation of facts is inherently a political exercise, and our use of facts to encourage a policy response is inseparable from our beliefs about how they world should work.

To think further about the relevance of this discussion, see this post on policy evaluation, this page on the use of evidence in policymaking, this book by Douglas, and this short commentary on ‘honest brokers’ by Jasanoff.

8 Comments

Filed under Evidence Based Policymaking (EBPM), UK politics and policy